7.2 In Exercises 16–18, use radical notation to rewrite each expression. Simplify, if possible.

16.
$$(5xy)^{\frac{1}{3}}$$

17.
$$16^{\frac{3}{2}}$$

In Exercises 19–20, rewrite each expression with rational exponents.

19.
$$\sqrt{7x}$$

1 20.
$$(\sqrt[3]{19xy})^5$$

In Exercises 21–22, rewrite each expression with a positive rational exponent. Simplify, if possible.

21.
$$8^{-\frac{2}{3}}$$

22.
$$3x(ab)^{-\frac{4}{5}}$$

In Exercises 23–26, use properties of rational exponents to simplify each expression. $_1$

23.
$$x^{\frac{1}{3}} \cdot x^{\frac{1}{4}}$$

24.
$$\frac{5^{\frac{5}{2}}}{5^{\frac{3}{2}}}$$

25.
$$(8x^6y^3)^{\frac{1}{3}}$$

25.
$$\left(x^{-\frac{2}{3}}y^{\frac{1}{4}}\right)^{\frac{1}{2}}$$

In Exercises 27–31, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation.

27.
$$\sqrt[3]{x^9y^{12}}$$

28.
$$\sqrt[9]{x^3y^9}$$

$$29. \sqrt{x} \cdot \sqrt[3]{x}$$

30.
$$\frac{\sqrt[3]{x^2}}{\sqrt[4]{x^2}}$$

32. The function
$$f(x) = 350x^{\frac{2}{3}}$$
 models the expenditures, $f(x)$, in millions of dollars, for the U.S. National Park Service x years after 1985. According to this model, what will expenditures be in 2012?

33.
$$\sqrt{3x} \cdot \sqrt{7y}$$

34.
$$\sqrt[5]{7x^2} \cdot \sqrt[5]{11x}$$

35.
$$\sqrt[6]{x-5} \cdot \sqrt[6]{(x-5)^4}$$

36. If
$$f(x) = \sqrt{7x^2 - 14x + 7}$$
, express the function, f , in simplified form. Assume that x can be any real number.

In Exercises 37–39, simplify by factoring. Assume that all variables in a radicand represent positive real numbers.

37.
$$\sqrt{20x^3}$$

38.
$$\sqrt[3]{54x^8y^6}$$

$$\boxed{39.} \sqrt[4]{32x^3y^{11}z^5}$$

In Exercises 40–43, multiply and simplify, if possible. Assume that all variables in a radicand represent positive real numbers.

40.
$$\sqrt{6x^3} \cdot \sqrt{4x^2}$$

$$\sqrt{41}$$
. $\sqrt[3]{4x^2y} \cdot \sqrt[3]{4xy^4}$

42.
$$\sqrt[5]{2x^4y^3z^4} \cdot \sqrt[5]{8xy^6z^7}$$

43.
$$\sqrt{x+1} \cdot \sqrt{x-1}$$

7.4 Assume that all variables represent positive real numbers. In Exercises 44-47, add or subtract as indicated.

44.
$$6\sqrt[3]{3} + 2\sqrt[3]{3}$$

$$\sqrt{45.}5\sqrt{18} - 3\sqrt{8}$$

46.
$$\sqrt[3]{27x^4} + \sqrt[3]{xy^6}$$

47.
$$2\sqrt[3]{6} - 5\sqrt[3]{48}$$

In Exercises 48-50, simplify using the quotient rule.

$$\sqrt[48.]{\sqrt[3]{\frac{16}{125}}}$$

49.
$$\sqrt{\frac{x^3}{100y^4}}$$

$$50. \quad \sqrt[4]{\frac{3y^5}{16x^{20}}}$$

In Exercises 51-54, divide and, if possible, simplify.

51.
$$\frac{\sqrt{48}}{\sqrt{2}}$$

52.
$$\frac{\sqrt[3]{32}}{\sqrt[3]{2}}$$

$$\int 53. \sqrt[4]{\frac{4}{64x^7}} \sqrt[4]{2x^2}$$

54.
$$\frac{\sqrt{200x^3y^2}}{\sqrt{2x^{-2}y}}$$

7.5 Assume that all variables represent positive real numbers.

In Exercises 55–62, multiply as indicated. If possible, simplify any radical expressions that appear in the product.

55.
$$\sqrt{3}(2\sqrt{6}+4\sqrt{15})$$

$$\sqrt[3]{56}$$
. $\sqrt[3]{5}(\sqrt[3]{50} - \sqrt[3]{2})$

$$(\sqrt{7} - 3\sqrt{5})(\sqrt{7} + 6\sqrt{5})$$

58,
$$(\sqrt{x} - \sqrt{11})(\sqrt{y} - \sqrt{11})$$

59
$$\sqrt{(\sqrt{5} + \sqrt{8})^2}$$

60.
$$(2\sqrt{3} - \sqrt{10})^2$$

61.
$$(\sqrt{7} + \sqrt{13})(\sqrt{7} - \sqrt{13})$$

62.
$$(7-3\sqrt{5})(7+3\sqrt{5})$$

In Exercises 63-75, rationalize each denominator. Simplify, if possible.

63.
$$\frac{4}{\sqrt{6}}$$

$$64.$$
 $\sqrt{\frac{2}{7}}$

65.
$$\frac{12}{\sqrt[3]{9}}$$

66.
$$\sqrt{\frac{2x}{5y}}$$

67.
$$\frac{14}{\sqrt[3]{2x^2}}$$

68.
$$\sqrt[4]{\frac{7}{3x}}$$

70.
$$\frac{6}{\sqrt{3}-1}$$

71.
$$\frac{\sqrt{7}}{\sqrt{5} + \sqrt{3}}$$

72.
$$\frac{10}{2\sqrt{5}-3\sqrt{2}}$$

73.
$$\frac{\sqrt{x}+5}{\sqrt{x}-3}$$

74.
$$\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$

75.
$$\frac{2\sqrt{3} + \sqrt{6}}{2\sqrt{6} + \sqrt{3}}$$

In Exercises 76-79, rationalize each numerator. Simplify, if possible.

$$\sqrt{76}$$
. $\sqrt{\frac{2}{7}}$

77.
$$\frac{\sqrt[3]{3x}}{\sqrt[3]{v}}$$

78.
$$\frac{\sqrt{7}}{\sqrt{5} \pm \sqrt{3}}$$

79.
$$\frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$

In Exercises 21–23, solve each radical equation.

21.
$$3 + \sqrt{2x - 3} = x$$

22.
$$\sqrt{x+9} - \sqrt{x-7} = 2$$

23.
$$(11x + 6)^{\frac{1}{3}} + 3 = 0$$

$$f(x) = 2.9\sqrt{x} + 20.1$$

models the average height, f(x), in inches, of boys who are x months of age, $0 \le x \le 60$. Find the age at which the average height of boys is 40.4 inches.

25. Express in terms of *i* and simplify:
$$\sqrt{-75}$$
.

In Exercises 26–29, perform the indicated operation. Write the result in the form a + bi.

26.
$$(5-3i)-(6-9i)$$

$$(3-4i)(2+5i)$$

29.
$$\frac{3+i}{1-2i}$$

CUMULATIVE REVIEW EXERCISES (CHAPTERS 1-7)

In Exercises 1-5, solve each equation, inequality, or system.

1.
$$2x - y + z = -5$$

$$x - 2y - 3z = 6$$

$$x + y - 2z = 1$$

2.
$$3x^2 - 11x = 4$$

3.
$$2(x+4) < 5x + 3(x+2)$$

4.
$$\frac{1}{x+2} + \frac{15}{x^2-4} = \frac{5}{x-2}$$

5.
$$\sqrt{x+2} - \sqrt{x+1} = 1$$

6. Graph the solution set of the system:

$$x + 2y < 2$$

$$2y - x > 4$$
.

In Exercises 7-15, perform the indicated operations.

7.
$$\frac{8x^2}{3x^2-12} \div \frac{40}{x-2}$$

$$8. \frac{x + \frac{1}{y}}{y + \frac{1}{x}}$$

9.
$$(2x-3)(4x^2-5x-2)$$

$$10. \ \frac{7x}{x^2 - 2x - 15} - \frac{2}{x - 5}$$

11.
$$7(8-10)^3-7+3\div(-3)$$

12.
$$\sqrt{80x} - 5\sqrt{20x} + 2\sqrt{45x}$$

13.
$$\frac{\sqrt{3}-2}{2\sqrt{3}+5}$$

14.
$$(2x^3 - 3x^2 + 3x - 4) \div (x - 2)$$

15.
$$(2\sqrt{3} + 5\sqrt{2})(\sqrt{3} - 4\sqrt{2})$$

In Exercises 16-17, factor completely.

16.
$$24x^2 + 10x - 4$$

17.
$$16x^4 - 1$$