Identify each transformation from the parent function $f(x) = \sqrt{x}$ to g.

27.
$$g(x) = 4\sqrt{x}$$

28.
$$g(x) = 3\sqrt{x}$$

29.
$$g(x) = -\frac{1}{4}\sqrt{x}$$

30.
$$g(x) = -\frac{1}{3}\sqrt{x}$$

31.
$$g(x) = \sqrt{-4x}$$

32.
$$g(x) = \sqrt{-3x}$$

33.
$$g(x) = \sqrt{x+4}$$

31.
$$g(x) = \sqrt{x-3}$$

34. $g(x) = \sqrt{x-3}$

35.
$$g(x) = \sqrt{x+4}$$

33.
$$g(x) = \sqrt{x+1}$$

36. $g(x) = \sqrt{x-3}$

37.
$$g(x) = \sqrt{-2x} + 1$$

38.
$$g(x) = \sqrt{x+3}$$

36.
$$g(x) = \sqrt{x-3}$$
 37. $g(x) = -\sqrt{3x-1}$ **39.** $g(x) = -\sqrt{x-4} + 3$ **40.** $g(x) = -\sqrt{3x-1}$

40.
$$g(x) = -\sqrt{3x} - 1$$

41.
$$g(x) = -\sqrt{-x}$$

I internet connect Homework **Help Online**

Go To: go.hrw.com Keyword: MB1 Homework Help for Exercises 42-57

Write the function for each graph described below.

- **42.** the graph of f(x) = |x| translated 4 units to the left
- **43.** the graph of $f(x) = x^2$ translated 2 units to the right
- **44.** the graph of f(x) = |x| translated 5 units up
- **45.** the graph of $f(x) = x^2$ translated 6 units down
- **46.** the graph of $f(x) = x^2$ vertically stretched by a factor of 3
- **47.** the graph of $f(x) = \sqrt{x}$ vertically compressed by a factor of $\frac{1}{3}$
- **48.** the graph of $f(x) = x^2$ horizontally compressed by a factor of $\frac{1}{5}$
- **49.** the graph of $f(x) = \sqrt{x}$ horizontally stretched by a factor of 4
- **50.** the graph of f(x) = 3x + 1 reflected across the x-axis
- **51.** the graph of f(x) = 2x 1 reflected across the y-axis
- **52.** the graph of $f(x) = x^2$ vertically stretched by a factor of 2 and translated
- **53.** the graph of f(x) = |x| horizontally compressed by a factor of $\frac{1}{3}$, reflected across the x-axis, and translated 3 units down
- **54.** the graph of $f(x) = x^2$ translated 7 units to the left
- **55.** the graph of $f(x) = x^2$ translated 5 units up
- **56.** the graph of $f(x) = x^2$ stretched vertically by a factor of 2
- **57.** the graph of $f(x) = x^2$ reflected across the *y*-axis and stretched horizontally
- 58. How are the domain and range of a function affected by a reflection across the y-axis? across the x-axis? Include examples in your explanation.
- 59. Show that a vertical compression can have the same effect on a graph as a horizontal stretch.

CHALLENGES

At right is the graph of the function f. Draw a careful sketch of each transformation of f.

60.
$$g(x) = f(2x)$$

61.
$$g(x) = 2f(x)$$

62.
$$g(x) = -f(x)$$

63.
$$g(x) = f(x+2)$$

64.
$$g(x) = f(x) + 3$$

65.
$$g(x) = f(\frac{1}{2}x)$$

