Guided Skills Practice

Complete the square for each quadratic expression to form a perfectsquare trinomial. Then write the new expression as a binomial squared. (EXAMPLE 1)

5.
$$x^2 - 12x$$

6.
$$x^2 + 5x$$

- 7. Solve $x^2 4x 21 = 0$ by completing the square. (**EXAMPLE 2**)
- **8.** Solve $2x^2 + 5x = 3$. (**EXAMPLE 3**)
- **9. TRANSFORMATIONS** Given $g(x) = x^2 + 12x + 20$, write the function in vertex form, and give the coordinates of the vertex and the equation of the axis of symmetry. Then describe the transformations from $f(x) = x^2$ to g. (EXAMPLE 4)
- APPLICATION

CONNECTION

10. SPORTS A softball is thrown upward with an initial velocity of 32 feet per second from 5 feet above ground. The ball's height in feet above the ground is modeled by $h(t) = -16t^2 + 32t + 5$, where t is the time in seconds after the ball is released. Complete the square and rewrite h in vertex form. Then find the maximum height of the ball. (EXAMPLE 5)

internet connect Homework

Help Online Go To: go.hrw.com Keyword: MB1 Homework Help for Exercises 17-37

Practice and Apply

Complete the square for each quadratic expression to form a perfectsquare trinomial. Then write the new expression as a binomial squared.

11.
$$x^2 + 10x$$

12.
$$x^2 - 14x$$

13.
$$x^2 - 8x$$

14.
$$x^2 + 2x$$

15.
$$x^2 + 13x$$

16.
$$x^2 + 7x$$

Solve each equation by completing the square. Give exact solutions.

17.
$$x^2 - 8x = 3$$

18.
$$x^2 + 2x = 13$$

19.
$$x^2 - 5x - 1 = 4 - 3x$$

20.
$$0 = x^2 - 6x + 3$$

21.
$$0 = x^2 + 7x - 26$$

19.
$$x^2 - 5x - 1 - 4$$

22. $0 = x^2 - 3x - 6$

23.
$$x^2 + 7x + 10 = 0$$

21.
$$0 = x^2 + 7x - 26$$

24. $x^2 + 10x + 16 = 0$

22.
$$0 = x^2 - 3x -$$

25. $x^2 - x = 30$

23.
$$x^2 + 7x + 10 = 0$$

26. $0 = 3x^2 - 2x - 12$

27.
$$-2x^2 + 14x + 60 = 0$$

28.
$$0 = 3x^2 - 11x + 6$$

29.
$$-10 = x^2 - 8x + 2$$

30.
$$x^2 + 16x = 2$$

31.
$$4 - x^2 = 10x$$

32.
$$x^2 = 23 - 15x$$

33.
$$8x - 2 = x^2 + 15x$$

34.
$$-32x = 16 - x^2$$

35.
$$2x^2 = 22x - 11$$

36.
$$4x^2 - 8 = -13x$$

37.
$$2x^2 - 12 = 3x$$

Write each quadratic function in vertex form. Give the coordinates of the vertex and the equation of the axis of symmetry. Then describe the transformations from $f(x) = x^2$ to g.

38.
$$g(x) = 3x^2$$

39.
$$g(x) = -x^2 + 2$$

40.
$$g(x) = x^2 - 5x$$

41.
$$g(x) = x^2 + 8x + 1$$

42.
$$g(x) = x^2 - 6x - 2$$

38.
$$g(x) = 3x^2$$
 39. $g(x) = -x^2 + 2$ **40.** $g(x) = x^2 + 4x + 2$ **41.** $g(x) = x^2 + 8x + 11$ **42.** $g(x) = x^2 - 6x - 2$ **43.** $g(x) = -x^2 + 4x + 2$

44.
$$g(x) = x^2 + 7x + 3$$

45.
$$g(x) = -3x^2 + 6x - 9$$

42.
$$g(x) = x^2 - 6x - 2$$
 46. $g(x) = -2x^2 + 12x + 13$

47. Write three different quadratic functions that each have a vertex at (2, 5).